Noether's Theorem



Noether's theorem states that every continuous symmetry of the action of a physical system with conservative forces has a corresponding conservation law. This is the first of two theorems (see Noether's second theorem) published by the mathematician Emmy Noether in 1918.[1] The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem applies to continuous and smooth symmetries of physical space. Noether's formulation is quite general and has been applied across classical mechanics, high energy physics, and recently statistical mechanics.[2]

Noether's theorem is used in theoretical physics and the calculus of variations. It reveals the fundamental relation between the symmetries of a physical system and the conservation laws. It also made modern theoretical physicists much more focused on symmetries of physical systems. A generalization of the formulations on constants of motion in Lagrangian and Hamiltonian mechanics (developed in 1788 and 1833, respectively), it does not apply to systems that cannot be modeled with a Lagrangian alone (e.g., systems with a Rayleigh dissipation function). In particular, dissipative systems with continuous symmetries need not have a corresponding conservation law.[3]

Basic illustrations and background

As an illustration, if a physical system behaves the same regardless of how it is oriented in space (that is, it is invariant), its Lagrangian is symmetric under continuous rotation: from this symmetry, Noether's theorem dictates that the angular momentum of the system be conserved, as a consequence of its laws of motion.[4]: 126  The physical system itself need not be symmetric; a jagged asteroid tumbling in space conserves angular momentum despite its asymmetry. It is the laws of its motion that are symmetric.

As another example, if a physical process exhibits the same outcomes regardless of place or time, then its Lagrangian is symmetric under continuous translations in space and time respectively: by Noether's theorem, these symmetries account for the conservation laws of linear momentum and energy within this system, respectively.[5]: 23 [6]: 261 

Noether's theorem is important, both because of the insight it gives into conservation laws, and also as a practical calculational tool. It allows investigators to determine the conserved quantities (invariants) from the observed symmetries of a physical system. Conversely, it allows researchers to consider whole classes of hypothetical Lagrangians with given invariants, to describe a physical system.[4]: 127  As an illustration, suppose that a physical theory is proposed which conserves a quantity X. A researcher can calculate the types of Lagrangians that conserve X through a continuous symmetry. Due to Noether's theorem, the properties of these Lagrangians provide further criteria to understand the implications and judge the fitness of the new theory.

There are numerous versions of Noether's theorem, with varying degrees of generality. There are natural quantum counterparts of this theorem, expressed in the Ward–Takahashi identities. Generalizations of Noether's theorem to superspaces also exist.[7]

Source: Wikipedia

Post a Comment

0 Comments