In physics and chemistry, the spin quantum number is a quantum number (designated s) that describes the intrinsic angular momentum (or spin angular momentum, or simply spin) of an electron or other particle. It has the same value for all particles of the same type, such as s =
12 for all electrons. It is an integer for all bosons, such as photons, and a half-odd-integer for all fermions, such as electrons and protons.
The component of the spin along a specified axis is given by the spin magnetic quantum number, conventionally written ms.[1][2] The value of ms is the component of spin angular momentum, in units of the reduced Planck constant ħ, parallel to a given direction (conventionally labelled the z–axis). It can take values ranging from +s to −s in integer increments. For an electron, ms can be either +12 or −12 .
Nomenclature

The phrase spin quantum number refers to quantized spin angular momentum. The symbol s is used for the spin quantum number, and ms is described as the spin magnetic quantum number[3] or as the z-component of spin sz.[4]
Both the total spin and the z-component of spin are quantized, leading to two quantum numbers spin and spin magnet quantum numbers.[5] The (total) spin quantum number has only one value for every elementary particle. Some introductory chemistry textbooks describe ms as the spin quantum number,[6][7] and s is not mentioned since its value 12 is a fixed property of the electron; some even use the variable s in place of ms.[5]
The two spin quantum numbers and are the spin angular momentum analogs of the two orbital angular momentum quantum numbers and .[8]: 152
Spin quantum numbers apply also to systems of coupled spins, such as atoms that may contain more than one electron. Capitalized symbols are used: S for the total electronic spin, and mS or MS for the z-axis component. A pair of electrons in a spin singlet state has S = 0, and a pair in the triplet state has S = 1, with mS = −1, 0, or +1. Nuclear-spin quantum numbers are conventionally written I for spin, and mI or MI for the z-axis component.
The name "spin" comes from a geometrical spinning of the electron about an axis, as proposed by Uhlenbeck and Goudsmit. However, this simplistic picture was quickly realized to be physically unrealistic, because it would require the electrons to rotate faster than the speed of light.[9] It was therefore replaced by a more abstract quantum-mechanical description.
Source: Wikipedia

0 Comments